

Graphene-Based Ultra-Light Batteries for Aircraft

Carlos I. Calle, Ph.D., P.I.

NASA Kennedy Space Center

Richard B. Kaner, Ph.D., Co-I

University of California Los Angeles

NASA Aeronautics Research Mission Directorate (ARMD)

2014 Seedling Technical Seminar

February 19-27, 2014

The Team

NASA Aeronautics Research Institute

KSC

- Dr. Carlos I. Calle, P.I.
- Paul J. Mackey
- Michael R. Johansen
- Dr. Michael D. Hogue
 Jee Youn Hwang
- Dr. Eirik Holbert

UCLA

- Dr. Richard B. Kaner, Co-I
- Dr. Maher El-Kady
- Lisa Wang

Outline

- The innovation
- Background
- Technical approach
- Impact of the innovation
- Results of the Seedling effort to date
- Distribution/Dissemination—getting the word out
- Next steps

The Innovation

- Develop a graphene-based ultracapacitor prototype that is flexible, thin, lightweight, durable, low cost, and safe and that will demonstrate the feasibility for use in aircraft
- These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m²/g) to increase the electrical energy that can be stored.
- The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge/discharge cycle times as well as longer lives
- The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells.

Impact of the Innovation

NASA Aeronautics Research Institute

 Commercial ultracapacitors are currently being used in transportation. A fleet of buses near Shanghai has been running on ultracapacitors for the past several years.
 Only disadvantage: frequent stops due to low energy densities.

- Graphene-based ultracapacitors promise energy densities greater than existing commercial electrochemical ultracapacitors by an order of magnitude. They also have greater power densities than lithium-ion batteries by an order of magnitude.
- GO, the precursor for the production of graphene, is manufactured on the ton scale at low cost as opposed to lithium, which is a limited resource that must be mined throughout the world.
- A robust, lightweight, flexible, thin, and inexpensive energy storage device with energy and power densities superior to those of state-of-the-art energy storage devices will greatly benefit NASA and the nation's aeronautics.
- Such revolutionary energy storage devices will radically reduce the mass and weight of energy storage and supply devices resulting in more efficient aircraft.

What is Graphene?

- Graphene is a revolutionary new allotrope of carbon (a single atomic layer of graphite)
 with extraordinary properties:
 - Surface area: 2630 m²/g
 - Electrical conductivity: $10^6~\Omega^{-1}cm^{-1}$ (Cu: $0.6x10^6~\Omega^{-1}cm^{-1}$) π -electrons act like photons mobility is determined by graphene quality
 - Thermal conductivity: 5000 Wm⁻¹K⁻¹ (Cu: 401 Wm⁻¹K⁻¹)
 - Strongest material ever discovered: Tensile strength ~ 130
 GPa (steel ~0.4 GPa)
 - "Graphene is complicated and expensive to make in large sheets" Nature, Nov. 20, 2013

Background

NASA Aeronautics Research Institute

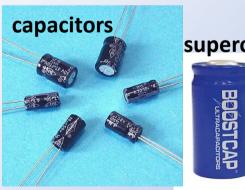
There are two main established methods for the storage and delivery of electrical energy:

- Batteries
 - Store energy with electrochemical reactions
 - High energy densities
 - Slow charge/discharge cycles
 - Used in applications requiring large amounts of energy → aircraft
- Electrochemical capacitors
 - Store energy in electrochemical double layers
 - Fast charge/discharge cycles
 - Low energy densities
 - Used in electronics devices Large capacitors are used in truck engine cranking

Current Aircraft Batteries

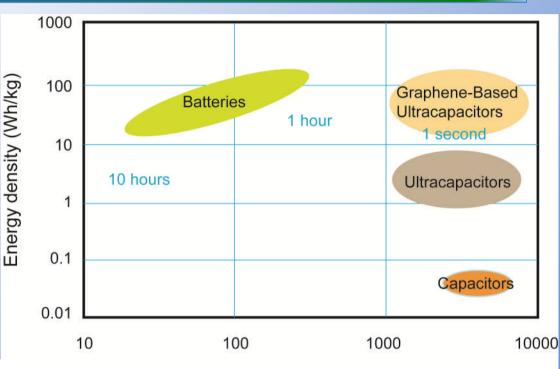
- General Aviation and Light aircraft → Lead acid batteries
- Larger aircraft and helicopters

 Nickel cadmium batteries
- Aircraft manufacturers are beginning to use Lithium Ion batteries due to their larger capacitances per unit weight.
 - Li-ion batteries still have low power densities
 - Performance is mainly controlled by
 - diffusion of Li ions
 - electron conductivity in the electrolyte
 - Recent approaches to increase performance involve
 - Use of nano-structured electrodes for shorter ion diffusion distances
 - Introduction of dopants to increase ion transport efficiency
 - However, stable performance over thousands of charge/discharge cycles has not been achieved.



Expected Performance

NASA Aeronautics Research Institute


Our graphene-based ultracapacitors:

- High power densities of ultracapacitors
- High energy densities due to huge surface area of graphene

supercapacitors

Power density (W/kg)

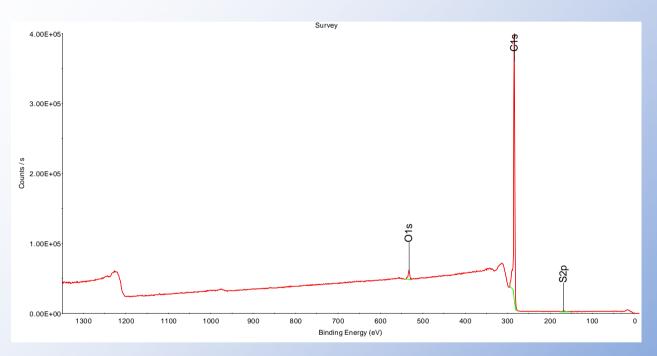
Energy and power density comparison for batteries, conventional ultracapacitors, and the expected performance of graphene-based ultracapacitors. Charging times are shown in blue.



Technical Approach

- Methods to reduce Graphene Oxide into graphene include chemical, thermal, and flash reduction
- UCLA Co-Investigator developed a light scribe lithography method that produces high quality graphene films that have high electrical conductivity and specific surface area, and can be used directly as electrodes in energy storage devices.*
- We are producing Laser Scribed graphene as well as direct laser reduced graphene.
- Ultracapacitors are assembled with graphene sheets using liquid electrolyte

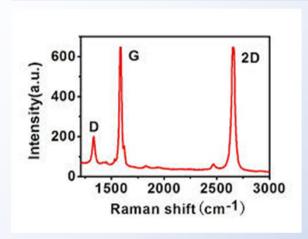
UCLA Laser Scribe Method



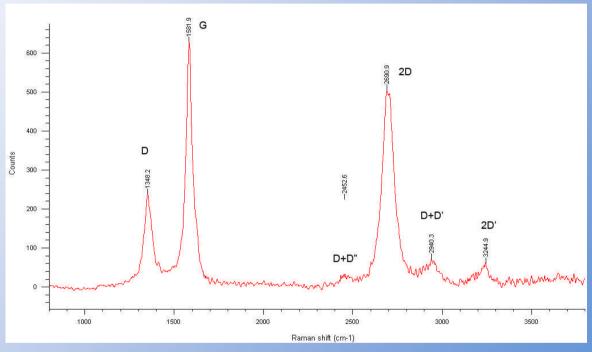
M.F. El-Kady, V.Strong, S.Dubin, R.B. Kaner, *Science* 335, 1326-1330 (2012)

Results: XPS Analysis

NASA Aeronautics Research Institute

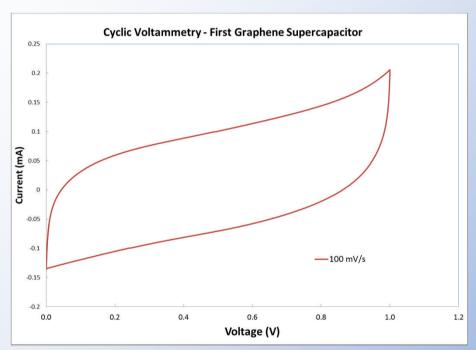


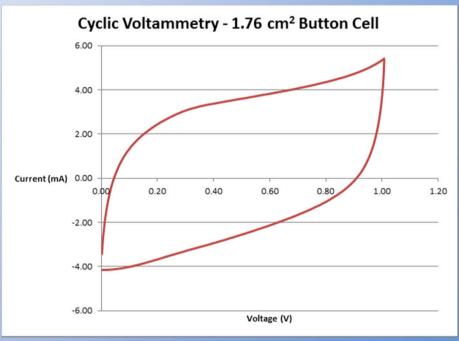
XPS survey scan of a representative graphene sample showing the relative presence of carbon (C1s peak) and oxygen (O1s peak).


- The carbon content of the graphene sheets ranges from 96% to 98.5% while the oxygen content is in the range of 1.4% to 3%.
- In comparison, more widely used chemical reduction methods reduce oxygen content to 10% or higher. Our laser reduction method produces a more pure graphene sample.
- The carbon and oxygen content of the unreduced graphene oxide ranges between 66% to 70% and 29% to 32% respectively.

Results: Raman Spectrum

Ideal Raman spectrum of graphene.


Actual Raman spectrum of a graphene sheet.

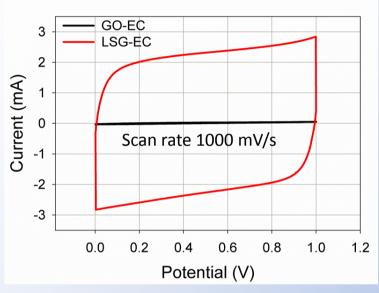

- Raman spectrum of the graphene sheet shows the G, 2D, D+D", and 2D' bands that are characteristic of graphene, as well as a Ramanforbidden band, D+D', that arises from defects.
- Defects could be edges, functional groups, or structural disorders

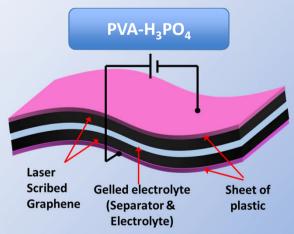
Results: Ultracapacitor Performance

NASA Aeronautics Research Institute

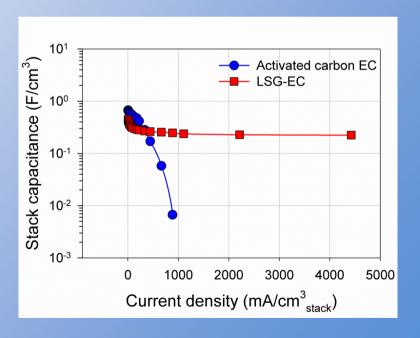
Cyclic voltammetry profile for first parallel-plate graphene capacitor prototype at 100 mV/s.

Cyclic voltammetry profile for parallel-plate graphene button cell capacitor prototype at 100 mV/s.

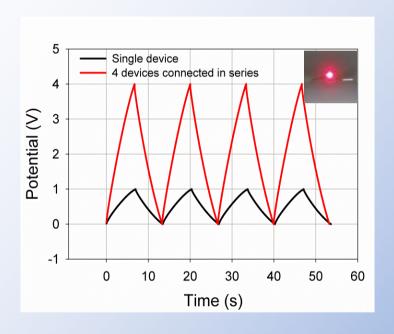

Ultracapacitor Performance

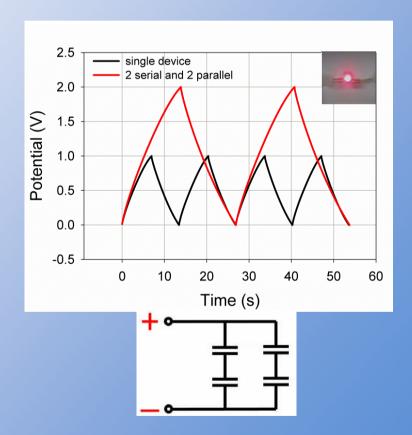

Curve	dV/dt (V/s)	Capacitance (F)	Capacitance (F/cm²)
1	1	1.38E-02	6.00E-03
2	0.1	2.45E-02	1.07E-02
3	0.01	5.50E-02	2.39E-02

- Capacitance and capacitance per unit area values were obtained from cyclic voltammetry at different scan rates for the button cell prototype.
- Capacitance per unit area increased from 2.4 mF/cm² for the early pouch cell to 24 mF/cm²
- Results are very encouraging and show that we should be able to increase the capacitance as we scale up the devices.

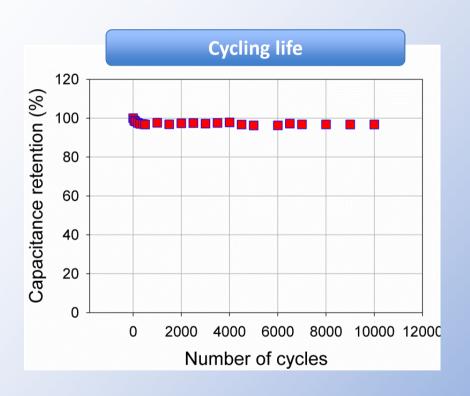


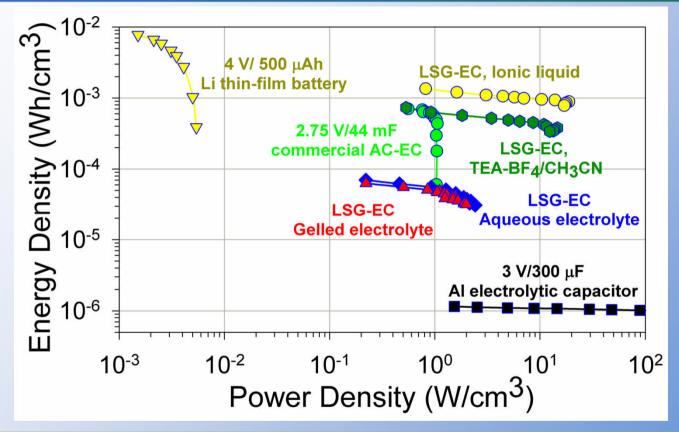
Ultracapacitor Performance





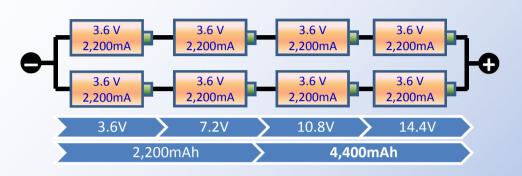
Tandem Supercapacitors




Cycling and Shelf-Life

LSG vs. Commercial Supercapacitors

- The plot shows the energy density and power density of the stack for all the devices tested (including current collector, active material, electrolyte and separator).
- Additional features: flexible, lightweight, current collector free and binder free



Distribution/Dissemination

- Graphene-based unltracapacitors for aeronautics applications
 - Invited paper to be presented at the 247th ACS
 National Meeting, Dallas, TX, March 16-20, 2014

Next Steps

- Increase in voltage produces a substantial increase in the energy density of a supercapacitor ($E = \frac{1}{2}CV^2$)
- Investigate new solvents and electrolytes with higher ion conductivity that would yield voltages suitable for aeronautics applications
- Investigate combinations of these electrolytes for higher performance
- Scale up graphene sheet production with our laser system
- Build prototypes to demonstrate feasibility of graphene-based ultracapacitors for aeronautics applications